r					
Name an	d Surname :				
Grade/C	<u>lass</u> : 12/	. Mathematics Teacher:			
		Hudson Park High School	×		
		TENTA DISUBERAGIS			
		GRADE 12 MATHEMATICS June Paper 2			
Marks	150				
<u>Time</u>	: 3 hours	<u>Date</u>	: / 20		
Examiner	: SLT	Moderator(s)	: FRD and PHL		
		INSTRUCTIONS			
1.	Illegible work, in the opin	nion of the marker, will earn zero m	arks.		
2.	Number your answers clearly and accurately, exactly as they appear on the question paper.				
3. <u>NB</u>	• Leave 1 line open l	between each of your answer	rs.		
4. <u>NB</u>	and the Answer BookHand in your submisQuestion Paper (orAnswer Booklet (b)	ssion in the following manner n top)	r:		
5.	Employ relevant formulae awarded full marks.	and show all working out. Answe	ers alone may not be		
6.	(Non-programmable and r	non-graphical) Calculators may be t	used, unless their usage		

Round off answers to 2 decimal places, where necessary, unless instructed otherwise.

If (Euclidean) Geometric statements are made, reasons must be stated appropriately.

is specifically prohibited.

7.

8.

QUESTION 1 [8 marks]

1. For the data given below:

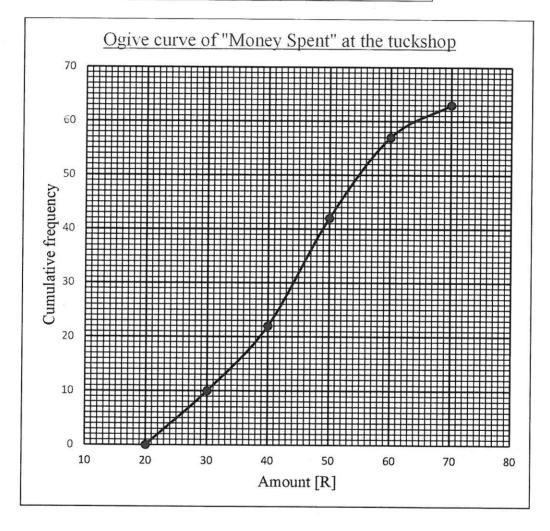
17 20 21 25 29 30 35 41 56 60 70 85	88
-------------------------------------	----

Determine the 1.1.

of the mean.

1.2.2.

1.1.1.1.	the mean, \bar{x}	<u>1</u>		
1.1.1.2.	the median, M	1	<u>2</u>	
1.1.2.	Hence, comment on the distribution of the data.		<u>2</u>	(4)
1.2.	Determine the			
1.2.1.	standard deviation, σ		<u>1</u>	


<u>3</u>

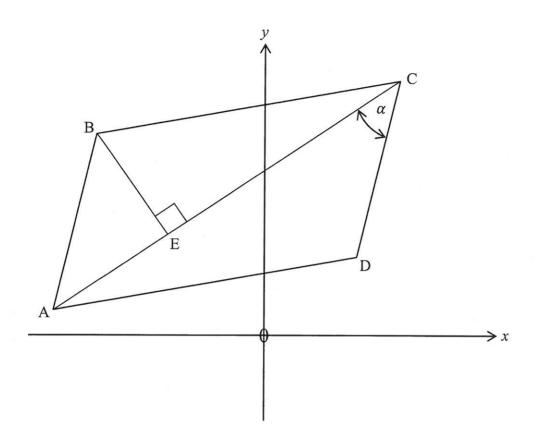
(4)

percentage of values lying within one standard deviation

2. The amount of money, in Rands, that learners spent while visiting the tuckshop of a certain day was analysed to reveal:

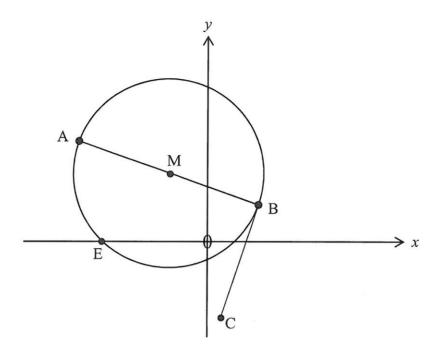
Amount [R]	Frequency
$20 < x \le 30$	а
$30 < x \le 40$	12
$40 < x \le 50$	20
$50 < x \le 60$	b
$60 < x \le 70$	6

- 2.1. How many learners visited the tuckshop on the day of the analysis? (1)
- 2.2. Determine the values of a and b. (2)
- 2.3. State the modal class. (1)
- 2.4. Use the ogive to estimate the number of learners who spent more than R 53 at the tuckshop on the day of the analysis. (2)


QUESTION 3 [6 marks]

3. An oratory competition was held with six speakers participating. Two judges scored each speaker as follows (out of 50):

Speaker	1	2	3	4	5	6
Judge 1 (x)	45	10	15	20	30	25
Judge 2 (y)	37	15	8	13	35	20


- 3.1. Determine the equation of the last squares regression line for the scores given by the judges. (3)
- 3.2. Are the judges consistent in their scoring of the speakers? Justify your answer with *relevant* statistics. (2)
- 3.3. A seventh speaker entered late for the oratory competition. Judge 2 scored them as a 30. Estimate what Judge 1 would have scored them as, to the nearest whole number.

4. ABCD is a parallelogram with AC \perp BE. A(-6; 1), B(-5; 6), C(3; 7) and AĈD = α .

4.1.	Determine the equations of		
4.1.1	AC	<u>3</u>	
4.1.2.	BE	<u>3</u>	(6)
4.2.	Calculate the coordinates of E, showing that they will be $E(-3; 3)$.		(3)
4.3.	Calculate the lengths (in surd form if necessary) of:		
4.3.1.	AC	<u>2</u>	
4.3.2.	BE	1	(3)
4.4.	Determine the area of parallelogram ABCD.		(3)
4.5.	Calculate the magnitude of α .		(5)
4.6.	Write down the coordinates of D.		(2)

5. M is the centre of the circle whose equation is $(x + 1)^2 + (y - 6)^2 = 45$. B(5; 3) and C(1; -5).

- 5.1. Determine the coordinates of
- 5.1.1. M
- 5.1.2. A
- 5.1.3. E $\underline{3}$ (6)
- 5.2. Is BC a tangent to the circle at point B? Justify your answer with all the relevant calculations and reasons. (5)
- 5.3. If $D(d; -7\frac{5}{6})$, B and C are collinear, calculate the value of d. (3)
- 5.4. If the circle was moved 2 units vertically upwards and the radius was doubled, what would its new equation be? (2)

QUESTION 6 [17 marks]

6.1. Given: cos(A - B) = cos A cos B + sin A sin BUse the given formula to derive the formula for sin(A - B). (3)

6.2. Given: $p \tan 26^{\circ} - 1 = 0$, determine the following without the use of a calculator:

6.2.1. $\sin 86^{\circ}$ <u>5</u>

6.2.2. $\sin 13^{\circ}$ 3

6.2.3. $\tan 2096^{\circ}$ $\underline{3}$ (11)

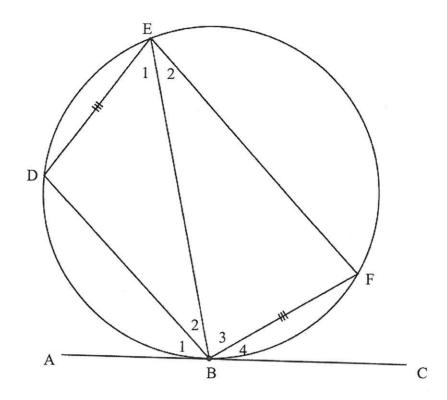
6.3. If $\cos 2x = \frac{3}{5}$, determine $\cos(-x)$ without the use of a calculator. (3)

QUESTION 7 [16 marks]

7. Given $f(x) = -\sin 2x$ and $g(x) = \cos(x + 60^\circ)$.

7.1. On the given set of axes, sketch rough graphs of f and g, for $x \in [-180^{\circ}; 180^{\circ}]$. (6)

7.2. For f, write down the

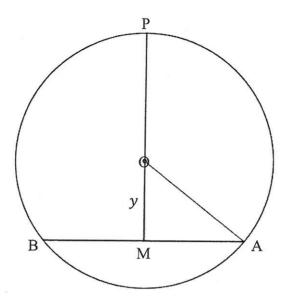

7.2.1. range 1

7.2.2. period $\underline{1}$ (2)

7.3.1. Calculate the general solution of f(x) = g(x).

7.3.2. Now, solve for x if f(x) > g(x) and $x \in [-180^\circ; 180^\circ]$. $\underline{3}$ (8)

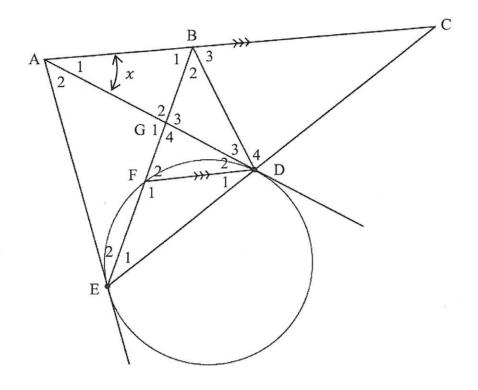
8. DE = FB = 5 units, EF = 6 units, BE = 7 units, ABC is a tangent to the circle at point B and $\widehat{D} > 90^{\circ}$.


Calculate

8.1.
$$\widehat{E}_2$$
 (3)

8.2.
$$\widehat{B}_1$$
 (8)

QUESTION 9 [6 marks]


9. M is the midpoint of chord AB. OM = y, AB = 20 units and $\frac{PM}{OM} = \frac{5}{2}$.

- 9.1. Write down the length of MA. (1)
- 9.2. Give the reason why OM \perp AB. (1)
- 9.3. Calculate the value of y. (4)

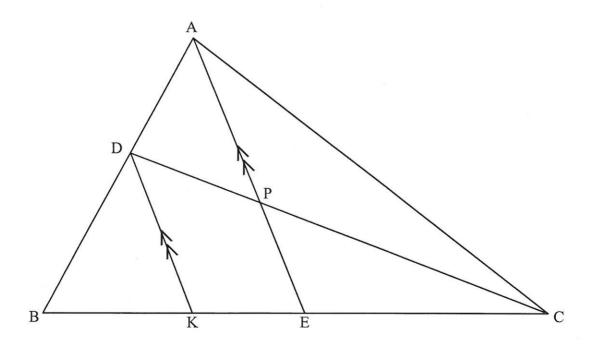
QUESTION 10 [9 marks]

10. AE and AD are tangents to the circle at points E and D respectively. ABC // FD. $\widehat{A}_1 = x$.

Prove that:

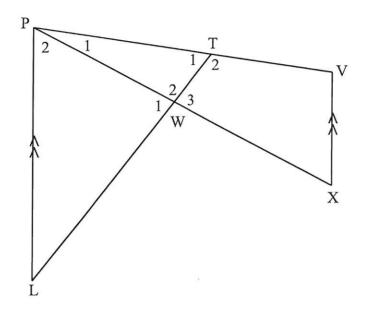
10.1. ABDE is a cyclic quadrilateral. (4)

10.2. If it is further given that EF = FD, that AE = CD. (5)


QUESTION 11 [11 marks]

11.1. In the diagram, DE // BC.

Prove the theorem which states that :
$$\frac{AD}{DB} = \frac{AE}{EC}$$
 (6)


11.2. $\frac{AD}{BD} = \frac{2}{3}$ and $\frac{BC}{EC} = \frac{7}{3}$. KD // EPA.

Calculate:
$$\frac{CP}{PD}$$
 (5)

QUESTION 12 [8 marks]

12. PT = 6 units, TV = 4 units, VX = 4 units, XW = 7 units, WP = 5 units, TW = 2 units and PL // VX.

Prove that:

12.1.
$$\Delta PTW /// \Delta PXV$$
 (4)

12.2. PL is a tangent to the circle passing through points P, W and T. (4)

Examination Guidelines

5. INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1 + ni)$$

$$A = P(1 - ni)$$

$$A = P(1+ni)$$
 $A = P(1-ni)$ $A = P(1-i)^n$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
; $r \neq 1$ $S_{\infty} = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x \left[1 - \left(1 + i \right)^{-n} \right]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$y - y_1 = m(x - x_1)$$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$ area $\triangle ABC = \frac{1}{2}ab \cdot \sin C$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$area \Delta ABC = \frac{1}{2}ab.\sin C$$

$$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\overline{x} = \frac{\sum x}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$